
Thread Safety with Phaser, StampedLock and VarHandle

Thread Safety
with Phaser,

StampedLock
and VarHandle

Dr Heinz M. Kabutz
Last Updated: 2020-11-07

© 2020 - Heinz Max Kabutz - All Rights Reserved

Thread Safety with Phaser, StampedLock and VarHandle

For the easily amused

Thread Safety with Phaser, StampedLock and VarHandle

Phaser

Thread Safety with Phaser, StampedLock and VarHandle

Phasers
! Allows threads to coordinate by phases

– More flexible than CountDownLatch and CyclicBarrier

! Registration
– Number of parties registered may vary over time

• Same as count in CountDownLatch, parties in CyclicBarrier
• A party can register/deregister itself at any time

! ManagedBlocker
– Can be used in the ForkJoinPool

Thread Safety with Phaser, StampedLock and VarHandle

Demo of
Cojoining

Approaches
github.com/kabutz/modern-synchronizers

branch talks-20-11-07_DevoxxUkraine

Thread Safety with Phaser, StampedLock and VarHandle

ManagedBlocker
! ForkJoinPool makes more threads when blocked

– ForkJoinPool is configured with desired parallelism

! Uses in the JDK
– Java 7: Phaser
– Java 8: CompletableFuture
– Java 9: Process, SubmissionPublisher
– Java 14: AbstractQueuedSynchronizer

• ReentrantLock, ReentrantReadWriteLock, CountDownLatch,
Semaphore

– Loom: LinkedTransferQueue, SynchronousQueue,
SelectorImpl

Thread Safety with Phaser, StampedLock and VarHandle

For All You Wonderful Programmers
! Surprise for those listening to me live today

– https://tinyurl.com/dvx2020

! Coupon will expire once talk is over, so get it now
– Lifetime access to course

Thread Safety with Phaser, StampedLock and VarHandle

StampedLock

Thread Safety with Phaser, StampedLock and VarHandle

What is StampedLock?
! Java 8 synchronizer

! Allows optimistic reads
– ReentrantReadWriteLock only has pessimistic reads

! Not reentrant
– This is not a feature

! Use to enforce invariants across multiple fields
– For simple classes, synchronized/volatile is easier and faster

! Can split locking and unlocking between threads

Thread Safety with Phaser, StampedLock and VarHandle

Pessimistic Exclusive Lock (write)
public class StampedLock {
 long writeLock() // never returns 0, might block

 // new write stamp if successful; otherwise 0
 long tryConvertToWriteLock(long stamp)

 void unlockWrite(long stamp) // needs write stamp

// and a bunch of other methods left out for brevity

Thread Safety with Phaser, StampedLock and VarHandle

Pessimistic Non-Exclusive Lock (read)
public class StampedLock { // continued ...
 long readLock() // never returns 0, might block

 // new read stamp if successful; otherwise 0
 long tryConvertToReadLock(long stamp)

 void unlockRead(long stamp) // needs read stamp

 void unlock(long stamp) // unlocks read or write

Thread Safety with Phaser, StampedLock and VarHandle

Optimistic Non-Exclusive Read (No Lock)
public class StampedLock { // continued ...
 // could return 0 if a write stamp has been issued
 long tryOptimisticRead()

 // return true if stamp was non-zero and no write
 // lock has been requested by another thread since
 // the call to tryOptimisticRead()
 boolean validate(long stamp)

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return process(currentState1, currentState2);
}

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return process(currentState1, currentState2);
}

We get a
stamp to

use for the
optimistic

read

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return process(currentState1, currentState2);
}

We read field
values into
local fields

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return process(currentState1, currentState2);
}

Next we validate
that no write locks
have been issued
in the meanwhile

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return process(currentState1, currentState2);
}

If they have,
then we don't
know if our
state is clean

Thus we acquire a
pessimistic read
lock and read the

state into local
fields

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return process(currentState1, currentState2);
}

Thread Safety with Phaser, StampedLock and VarHandle

Sifis the Cretan Crocodile (RIP)
! Poor critter was

roaming around
Crete

– Pet grew too big
– Or hungry

! Eventually died
in our cold
winter months

Thread Safety with Phaser, StampedLock and VarHandle

Introducing the Position Class
! When moving from (0,0) to (5,5), we want to travel in

a diagonal line
– Don’t want to ever see our position at (0,5) or especially (5,0)

(5,5)

(0,0)

👍 👎 (5,5)

(0,0)

(5,0)

Thread Safety with Phaser, StampedLock and VarHandle

Refactoring
Position

github.com/kabutz/modern-synchronizers
branch talks-20-10-24_JConfPeru

Thread Safety with Phaser, StampedLock and VarHandle

Newer Idiom for Optimistic Read
public double distanceFromOrigin() {
 long stamp = sl.tryOptimisticRead();
 try {
 retryHoldingLock: for (;; stamp = sl.readLock()) {
 if (stamp == 0L) continue retryHoldingLock;
 // possibly racy reads
 double currentState1 = state1;
 double currentState2 = state2; // etc.
 if (!sl.validate(stamp))
 continue retryHoldingLock;
 return process(currentState1, currentState2);
 }
 } finally {
 if (StampedLock.isReadLockStamp(stamp))
 sl.unlockRead(stamp);
 }
}

Thread Safety with Phaser, StampedLock and VarHandle

Truly Optimistic, Optimistic Read
public double distanceFromOrigin() {
 long stamp = sl.tryOptimisticRead();
 try {
 retryHoldingLock: for (;; stamp = sl.readLock()) {
 if (stamp == 0L) continue retryHoldingLock;
 // possibly racy reads
 double currentState1 = state1;
 double currentState2 = state2; // etc.
 if (!sl.validate(stamp))
 continue retryHoldingLock;
 return process(currentState1, currentState2);
 }
 } finally {
 if (StampedLock.isReadLockStamp(stamp))
 sl.unlockRead(stamp);
 }
}

Thread Safety with Phaser, StampedLock and VarHandle

Truly Optimistic, Optimistic Read
public double distanceFromOrigin() {
 long stamp = sl.tryOptimisticRead();
 try {
 retryHoldingLock: for (;; stamp = sl.readLock()) {
 // possibly racy reads
 double currentState1 = state1;
 double currentState2 = state2; // etc.
 if (!sl.validate(stamp))
 continue retryHoldingLock;
 return process(currentState1, currentState2);
 }
 } finally {
 if (StampedLock.isReadLockStamp(stamp))
 sl.unlockRead(stamp);
 }
}

Thread Safety with Phaser, StampedLock and VarHandle

Refactoring
Position x 2

github.com/kabutz/modern-synchronizers
branch talks-20-10-24_JConfPeru

Thread Safety with Phaser, StampedLock and VarHandle

VarHandle

Making your application run even faster!

Thread Safety with Phaser, StampedLock and VarHandle

Java 9 VarHandles Instead of Unsafe
! VarHandles remove biggest temptation for Unsafe

– As fast as Unsafe
– Make sure VarHandle fields are static final

! Can read and write fields of class
– getVolatile() / setVolatile()
– getAcquire() / setRelease()
– getOpaque() / setOpaque()
– get() / set() - plain
– compareAndSet(), returning boolean
– compareAndExchange(), returning found value

Thread Safety with Phaser, StampedLock and VarHandle

Refactoring
Position to
VarHandle

github.com/kabutz/modern-synchronizers
branch talks-20-10-24_JConfPeru

Thread Safety with Phaser, StampedLock and VarHandle

compareAndExchange()
! Direct support for real compare-and-swap

– Before it was compare-and-set

! Supported by Atomic classes and VarHandles

! Eliminates one volatile read - might be faster
public void move(int deltaX, int deltaY) {
 int[] current, next = new int[2], swapResult = xy;
 do {
 current = swapResult;
 next[0] = current[0] + deltaX;
 next[1] = current[1] + deltaY;
 }
 while ((swapResult = (int[]) XY.compareAndExchange(
 this, current, next)) != current);
}

Thread Safety with Phaser, StampedLock and VarHandle

Refactoring
Position to

VarHandle x 2
github.com/kabutz/modern-synchronizers

branch talks-20-10-24_JConfPeru

Thread Safety with Phaser, StampedLock and VarHandle

Question Time
! Remember: https://tinyurl.com/dvx2020

– Coupon valid until talk ends

! Twitter: @heinzkabutz

! Newsletter: https://www.javaspecialists.eu

! Email: heinz@javaspecialists.eu

